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NON-NEWTONIAN PROPERTIES OF EMULSIONS IN SOLUTIONS OF SURFACE-ACTIVE 

AGENTS 

A. Yu. Zubarev UDC 539.41:541.182 

The adsorption of surface-active agents (surfactants) on channels changes 
the effective viscosity of an emulsion and gives it non-Newtonian proper- 
ties. 

Establishing the form of theological equations of state of disperse systems is one of 
the most important problems in the physical mechanics of mixtures. This problem is far from 
being resolved even for the simplest systems - suspensions of rigid particles or Newtonian 
drops in a Newtonian fluid. The situation is even more complicated if physicochemical pro- 
cesses which alter the structure of the flow near the particle are taking place on the sur- 
face of a particle or drop. Such phenomena can have a significant effect on the behavior of 
the mixture as a whole. Meanwhile, the result of this effect is impossible to predict by 
means of a phenomenological modeling of continuum equations. 

Here, we study the rheological properties of emulsions whose drops might adsorb an im- 
purity contained in the dispersion medium. It was shown in [i] that the capillary effects 
which occur in this case impart non-Newtonian properties to the emulsion even when the dis- 
perse phase and the dispersion medium are Newtonian fluids. However, it was assumed in [i] 
that sorption-~desorption processes take place at an infinitely high rate. Below, we consider 
the finiteness of these processes. At the same time, we correct the errors allowed in [i]. 
As in [i], we examine limitingly dilute mixtures in which we can ignore any particle inter- 
action. The surface tension of the drops is assumed to be strong enough to ensure that they 
are spherical in form during the flow process. 
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In a continuum approximation, the connection between the mean tensors of hydrodynamic 
stress ~ and the rate of shear flow e can be formally written in the usual form 

= 2~e, ( i )  

w h e r e  ~ i s ,  g e n e r a l l y  s p e a k i n g ,  a n o n l i n e a r  o p e r a t o r  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e s  and t i m e .  
I t  i s  d e t e r m i n e d  f r o m  t h e  r e l a t i o n  [2 ]  

3a ~ 
2(~  - -  ~o)eu = ~ p [ .( rinz~ dr-- ~o S (niv~ + n,@) dr ], 

Ir~== m== ( 2 )  
i, ], l = x ,  y, z 

(summation is performed over the repeating indices). Here, we integrate over the surface of 
an arbitrarily-chosen drop. In the general case, when determining the stress o + and the ve- 
locity v + on the surface of the drop, it is necessary to account for the presence of the re- 
maining particles of the mixture. This multiparticle problem is one of the most complex in 
the physical mechanics of mixtures and is presently very far from resolution. In limitingly 
dilute systems (p << i) - the only type of systems we will consider here - the mutual effect 
of the particles can be ignored and we can assume that a drop is located in an infinite vol- 
ume of the dispersion medium. We can also assume that the flow velocity at an infinite dis- 
tance from the drop coincides with the mean velocity of the emulsion in the region being 
examined. We will assume that this velocity is completely described by the mean tensor e. 

The continuum approximation is valid if the linear scales of change in flow velocity and 
pressure are much greater than a. We assume that this is the case. In the quasisteady case, 
when we can ignore the compressibility of the fluids and inertial effects, the problem of de- 
termining the flow structure near an arbitrary drop can be formulated as follows: 

- - V p  +~-NOAv + = 0 ,  d i v v + = = 0 ,  r ~ a ;  

- - V p * + N 1 A v * = 0 ,  d i v v * = 0 ,  r ~ a ;  

v + = 0 ,  v ~ = O ,  v + =  v~, (r + q - g r a d  s z = a f t ,  

v*, p* < oo, v + - ~ e r ,  r - ~ o o ;  

~+ = - -  p+l q- 2~0e+; ~* = - -  p*l  q- 2~1e*. 

r = a ;  
(3) 

It will henceforth be convenient to rewrite the expression for the capillary shear stress 
as follows: 

grad s ~ =  - - g r a d ~ F .  
0 r  (4) 

It follows from (4) that problem (3) can be solved and, thus, the relations (i) and (2) 
are valid if we know the distribution of the surface concentration F of surfactants on the 
drop and the dependence of the surface tension �9 on F. 

As is known from thermodynamics (see [3-5], for example), 
relation z(F ~ is given by the equation 

Ox P ~ aC ~ 
OF ---J=-RT C ~ OF ~' (5) 

for equilibrium situations the 

where R and T are the universal gas constant and the absolute temperature. The form of the 
derivative 3C~ ~ is determined by the specific adsorption law. For the sake of definite- 
ness, we assume that the surfactant molecules are adsorbed in accordance with the linear Lang- 
muir law. In this case, ignoring surface diffusion of the surfactant, we can write the prob- 
lem of determining F in the form: 

OC OC 
q - v + v C = D A C ,  r ~ a; - -  D 

at dr 
~ ( 1 - - s F ) C - - ~ r  = 0; 

OF 

Ot 
= = ( I - -  s t )  C - -  ~r  - -  div,rv +, r = a; C-~[C ~ r -~  oo. 

( 6 )  
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The first boundary condition of (6) reflects the balance between the adsorbing molecules 
of surfactant and the desorbing and diffusing (to the drop) solution molecules. The second 
condition presumes that the surface density of the surfactant may change as a result of sorp- 
tion-desorption and convective surface flow divsFVt + [3]. It should be noted that the au- 
thors of [i] incorrectly formulated the boundary conditions of the problem that are analogous 
to (6). Thus, the final results obtained in [6] are erroneous. However, the qualitative 
conclusions in [i] have been confirmed by subsequent analysis. 

Problem (3-6) is essentially nonlinear. At present, it cannot be solved analytically 
in general form. Thus, as in [i], we will restrict ourselves to studying the cases of very 
large and very small Brenner numbers Br=llella2/D. where llell is the norm of the tensor e. 

Small Values of the Brenner Number (Br << I). Linearizing (4-6) with respect to Br, we 
l 

write 

C = C ~ + c, s163 F~ 
=sC ~ + 1~ 

c Z }NBr .  gradj  = Ox tirades, CO (7) OFo ' F o 

To solve (3) and calculate the integrals in (2), it is convenient to assume that the 
tensor e is given in the form 

exx = ex, euy = - -  ey, e=cons t ,  (8) 

wh i l e  a l l  of  t he  r emain ing  components e i j  a re  equa l  t o  ze ro .  I t  shou ld  be no t ed  t h a t  t he  
selection of e in the form (8) cannot affect the final results, since the sought quantity n is 
a scalar. However, this choice does make the calculations considerably easier. 

Problem (3-6) will be solved in a spherical coordinate system with its origin at the 
center of the drop. We first apply the Fourier transform to (3-6), which leads to the re- 
placement of the operator 8/8t by the factor im. 

Retaining the notation for the originals of the quantities as their Fourier components, 
we obtain the solutions of (3-6) in the form 

v+ -- (A_~r -z + A_~r-~ + er) Y~I 

or ~ = (Axr +Aar  a) Y~, 

Yo 

c =  Gh(r) Yr, h(r) = r-'/=Hsl~(i• • = 

Yr = sin s 0 cos 2~, Y0 = sin 0 cos 0 cos 2~, 

v+ (_-~2 A_j -~  + er ) Yo, 

! / -  0 ' 

p ~  

V' s 

D' 

Y~p = sin 0 sin 2q), 

(9) 

where the polar axis is chosen to lie along the z direction; % and �9 are polar and azimuthal 
angles; Hs/2 is the first Hankel function; Aj and G are constants of integration whose values 
are determined from the boundary conditions of linearized variants (3-6). 

Having determined the constants Aj and G, we find the cartesian components v + and o ~. 
Using the latter in the integrals (2), we arrive at the following representation for the 
Fourier components of the operator q: 

~ = ' ~ o [ l +  ~o + 2 '5(~  + B) ] 
~o + ~ + B P ' (i0) 

where 
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9 0~ po 
5 OF ~ Oh 

B =  Dh' ' h = h ( a ) ;  h ' = - - , 0 a  
n - - -  ioJ 

mh - -  Dh' 

m = a ( 1 - - s F ~  n = ~ C % + ~ ,  

w h i l e  t h e  d e r i v a t i v e  ~ ~  ~ i s  d e t e r m i n e d  f rom (5)  and ( 7 ) .  

Inserting (i0) into (I) and using standard representations for Hankel functions 
after some simple but cumbersome transformations we arrive at the relation 

p~a=2~~ 

where P1 and P2 are fifth-degree polynomials in (i~) I/2. 
follows: 

(l l)  

[6], 

(12) 

The parameter q~ is determined as 

~lo ~]o[1_~_ ~]o -[- 2,5 (% -[- B~ ] B o _  9 0g r~ 
" ~ l o @ - ~ + B  ~ P ' 10 OF ~ Dan (13)  

The physical meaning of qo is the effective viscosity of the emulsion under steady- 
state conditions (~ = 0). If adsorption is absent (B ~ = 0), then the expression for q~ 
coincides with the classical Taylor formula. With an increase in the influence of adsorp- 
tive-capillary phenomena (B~ + ~), (13) becomes the Einstein formula for suspensions of 
hard spheres. The physical reason for such "hardening" of the drops was examined in detail 
in [i]. 

The explicit expressions for PI and P2 are not presented here due to their awkwardness. 
Applying the inverse Fourier transform to (13), after performing the appropriate calculations 
we arrive at the following rheological equation of state of the emulsion: 

O O ~ 
r t 

1 -I- ~ /2  Os ds + ~ -t- a ds + 

03 0 
t t 

+ ~4 ~ + ~/2 ds r i =  2rl ~ 1 +  7'~/2 
l /  t --- s -l/ ~--  s 

Oz 0 ~ 
t l 

+ r~ -~-  + T Y  ~ ds + - -  + r y  ~ ds e. 
-Vt - -  s - 4  OF -Vt - -  s 

ds "4- (14) 

The characteristic times cj and Tj are as follows: 

nD ' 
T2 - ~ .  ~ (110 "~ I]1) D 9 = ~ + y vF' + 4Dn (?]0-qLl]l) ]r 

3/2 9 " 
(15) 

�9 4 = - 5 -  (no + 00 vL, ~5 = y 

v 1 = z~D' T2 = - - ~  4~Dn-[--~- l + - ~ p  r ' v  [2, 
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P - v  

= a 2 T~/2= V - - ~ - ~ D ,  

~ = n o q ' - v l t + P  ~lo+-~-~h , ~-=6D+3~a, 

F ~ O~ v = 4D + ma, F' 
a OF ~ 

It is evident from (15) that ~$ and TJ are combinations of the time of diffusion relaxa- 
tion ~D = a =/D and sorption-desorptlon T S = n -l, as well as the time ~SD = (ma/D + ma)T S. 

The time ~D was evaluated in [i], where it was shown that T D ~ 10 -2 sec for actual emulsions 

with micron-size drops, while ~D ~ 104sec for emulsions with millimeter-size drops. The 
times T S and ~SD also fluctuate broadly. While T S in physical adsorption is small enough so 

that its effect will not be manifest in actual flows, in chemisorption ~S may be on the order 
of minutes or even hours. This will lead to significant relaxation phenomena in the case of 
slow flows of finely dispersed emulsions. For such flows, the diffusion times T D are too 
small to affect the character of flow of the mixture. 

Large Values of the Brenner Number (Br >> i)=. In this case, (6) does not admit lineari- 
zation with respect to time. To obtain the simplest estimates, as in [i] we use the model 
of a diffusion boundary layer. In accordance with this model, a drop is assumed to be sur- 
rounded by a concentric layer of thickness 6 (6 << a). Meanwhile, outside this layer (r > 
a+ 6), we can ignore the diffusion term in Eq. (6). Inside the layer (a < r < a + 6), the 
velocity is assumed to be small and we can use it to linearize the problem. The thickness 
of the boundary layer 6 can be evaluated by a method similar to that used in [3]: 

I D  ~1/2 [ 1/3 
~ ~ ]  ' ~1~ ~0, ~ / [ [ ~  ) , ~1 ~ ~0" (16)  

In  t h e  g e n e r a l  c a s e  6 ~ Hell -~,  where 1/3 ~ s ~ 1 /2 .  

Within the framework of the chosen model, the solutions of (6) are represented in the 
form 

C = C  ~ r > a + 6 ;  C = C ~  a < r < a + 6 ;  

{ } v~(a)a 
r = r ~  - D (17)  

The quantity 7 will be determined directly from the linearized boundary conditions (6), 
considering that, by virtue of 6 << a , ~c/~r ~ -c/6. As a result, we arrive at the equation 

dy n f = 3F~ ( e a - - 2  A-aa-a) Yr, (18) 
d - - ~ = - - r  r  D + m S '  

which cannot be analyzed by means of linear integral transforms, since the value of 6 depends 
on e and, thus, on time. 

We use (3), (4), and (7) to calculate the parameters A_ 2 and A-4 as functions of e and 
y. Then solving (18) in quadratures, using the results in (i) and (2), and considering the 
macroscopic isotropy of the emulsion, after calculations we obtain 

[ (  3 o oro ) ] 
o = 2 ~ 1 o  e ~  2 , 5 ~ 1 ~ 1 o  e y , 

~h -t- ~1o 10 ~1o ~ ~h (19)  

1 0'~ 
Tloe -}- ~hY 

I s  ]: "~= _~. 3rOa 3 OF ~ udtq-~~ 
~1o + ~h 

where yo is determined from the initial conditions of the problem. Inserting (16) into (19), 
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we arrive at the conclusion that at Br >> i the relationship between ~ and e is nonlinear and 
is nonlocal in character with respect to time - the flow pattern of the emulsion depends con- 
siderably on the history of the process. 

The relationship between ~ and e is simplified considerably in the steady-state case. 
Calculations show that in this case 

a=2~q~ , rl ~ [ 1 +  T]0 "-~ 2,5 ('1']1 "~ F) l 
~1o q- ~1 -}" F P J' 

F =  9 0~ r ~ m5 -I- D 

10 8F ~ a Dn 

(20) 

Comparing (20) and (13), we see that, by virtue of ~ <<a , 3T/SF ~ < 0, the effective vis- 
cosity of the emulsion is less at Br >> 1 than at Br << 1 and approaches its minimum value at 
Br § ~. 

In conclusion, we noted that the above features of emulsions in surfactant solutions 
should be manifest to an even greater degree with an increase in the concentration of the 
disperse phase. Here, new relaxational and nonlinear effects due to the interaction of 
drops will be seen. 

NOTATION 

a, drop radius; C and C ~ , concentration of surfactant near a drop and averaged over the 
medium; c = C - C~ D, diffusion coefficient of the surfactant; I , second-rank unit tensor; 
ni, components of the unit normal vector to the drop surface; r, radius vector directed from 
the center of the drop; s, surface area of the drop occupied by one molecule of surfactant; 
Tj and T', characteristic times; a and 6, sorption and desorption constants; F and F ~ true 
and equilibrium surface concentrations of surfactant; D, Do, and ~i, effective viscosity and 
the viscosities of the disperse phase and dispersion medium; p, volume concentration of the 
disperse phase; ~, surface tension of the drop; Tj, and x', characteristic times. The indices 
+ and * denote quantities near and inside the drop; t denotes tangential components of vec- 
tors and tensors. The operators div s and grad s have the same meaning as the ordinary diver- 
gence and gradient operators, but with fixed values of the radius vector r ~ a. 
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